产品分类
您现在的位置: 主页 > 公司新闻 > 东华大学将发电织物制成的“能源衣”

东华大学将发电织物制成的“能源衣”

时间:2019-03-07 07:57 来源: 作者: 点击:

可穿戴电子产品、能源产品是最近几年科技界探索的重点,袖子上的手机、宇航服上的自助生命系统……人们在科幻片上看到的,正走向真实的生活。近日,东华大学材料学院王志宏教授课题组在这一领域又取得突破,团队研发出了一种“可发电”的服装材料,使真正的“能源衣”成为现实。

东华大学将发电织物制成的“能源衣”

随着可穿戴电子设备的快速发展,人们对可穿戴能源的需求逐渐增大。由于传统电池存在缺乏柔韧性、不可拉伸、难以编织等局限性,柔性随身能源材料与器件发展获得了大量关注。但是,目前可穿戴电源的研究多数展示了“佩戴”形式的能源器件,其主要作为服装的附加品,仍缺乏穿着舒适性。相比之下,服装本体如果成为现成的物理载体,是更为理想的可穿戴功能集成平台。

东华大学将发电织物制成的“能源衣”

鉴于此,研究团队认为纤维、纱线、织物等服装材料将成为新一代发电载体。然而,成熟的发电技术,如光伏、热电、压电/摩擦电等,与服装材料和纺织工业的结合尚存在挑战。目前能源纺织品难以规模化生产,能源器件的性能易受环境湿度影响,而且尚缺乏利用单根纱线实现发电的技术。因此,“能源衣”的开发一直困难重重。

东华大学将发电织物制成的“能源衣”

在实验中,研究人员利用工业级的纺丝设备,实现了可拉伸摩擦发电纱线的连续化与规模化生产。此类发电纱线由高弹性聚合物材料(橡胶)与螺旋金属纤维构成,这两类本征弹性体与非本征弹性体,通过皮芯结构的设计合二为一,具有协同应变行为。发电纱线在拉伸、弯曲、扭曲等应变下,内部两类材料间发生电子转移,可产生毫瓦级的输出功率。

东华大学将发电织物制成的“能源衣”

研究人员深入探讨了金属与非晶聚合物接触/分离的单电极势阱模型,发现非晶聚合物不仅作为隔离层防止纱线内场电势被外界环境气氛(气体、水等)消除,其界面的感应电荷竟能够与外界气氛分子发生耦合增益,由此首次提出了摩擦发电器件的电势/极化耦合效应的假设。借助特殊的皮芯结构设计与耦合增益发电机制,研究团队研发的发电纱线无需借助与其他物体的相互作用即可自发电,并能够应用于不同气氛环境甚至是液体中。

东华大学将发电织物制成的“能源衣”

在此基础上,研究人员使用工业级的织样机将发电纱线进行编织,得到了具有弹性的发电织物,其同样具有两栖工作的能力。研究还同时发现,发电纱线亦可与其他市售纤维如尼龙纤维、聚丙烯腈纤维等共同编织,纺织品的透汽性、舒适性、发电功率便可有效调控。现在,研究人员已经可以穿着发电织物制成的“能源衣”,展示其为电子设备锂电池充电、驱动无线信号传输系统、捕捉人体运动姿态等功能。


相关研究进展


应用于智能可穿戴的高柔软、可呼吸、可裁剪和可洗涤发电织物


东华大学25日发布消息称,东华大学纺织科技创新中心俞建勇院士和丁彬研究员带领的纳米纤维研究团队在可穿戴发电织物研究领域取得重要进展,相关成果以《应用于智能可穿戴的高柔软、可呼吸、可裁剪和可洗涤发电织物》为题,发表于国际著名期刊《纳米能源》(Nano Energy)。


近年来,越来越多的可穿戴电子产品相继进入人们的视野,这类电子设备不断朝着小型化、便携化、多功能化等方向发展。传统的供能系统如电池,存在着硬质体积大、使用寿命有限、替换繁琐、电解液易污染环境等缺点,如何有效地从环境中收集机械能并持续稳定地为电子设备供电,是科学家们一直致力解决的问题。


功能性发电织物具备柔韧可编织、热湿舒适性好等优势,利用摩擦起电和静电感应的耦合效应,可以有效收集人体运动过程中的生物机械能并转化为电能,由此解决可穿戴电子产品的能源供给和续航时间问题。


但现有功能性发电织物由于加工技术和选用材料的局限,使其能量转化效率和能量密度低,同时可裁剪和可洗涤性差,限制了其应用性能的提升和应用领域的拓展。


针对一系列的研究难题,研究团队选用高强力、耐磨性好、弹性好的涤纶织物作为接触材料和基底材料,同时选用导电性优良的柔性导电织物作为电极层,通过静电纺丝和静电喷涂复合技术对涤纶织物表面进行改性处理,在其表面附上串珠结构的PVDF纳米纤维和PTFE纳米颗粒,提高织物的表面粗糙度,同时改善织物的摩擦电负性,从而大幅度提高电输出性能,制备得到一种柔软透气的新型发电织物。


该发电织物具备优异的耐久性和稳定性,同时具备优异的可裁剪性和水洗性,将裁剪过的发电织物重新粘合起来,其电流和电压可以恢复至初始值,在不同水洗时间处理后其电输出性能也基本保持不变。


此外,将发电织物与人体服装进行结合,还可以有效监测人体运动的幅度和角度,用作高灵敏的人体运动传感器。


该论文共同第一作者是纺织学院硕士生邱倩和材料学院博士生朱苗苗,共同通讯作者是丁彬研究员和李召岭副教授。


该研究工作得到了国家自然科学基金、上海市自然科学基金、上海市优秀学术带头人项目、东华大学励志计划等项目的大力资助。(完)


相关文章推荐: